Generalized cylinders in semi-Riemannian and spin geometry
نویسندگان
چکیده
منابع مشابه
Generalized Cylinders in Semi-riemannian and Spin Geometry
We use a construction which we call generalized cylinders to give a new proof of the fundamental theorem of hypersurface theory. It has the advantage of being very simple and the result directly extends to semi-Riemannian manifolds and to embeddings into spaces of constant curvature. We also give a new way to identify spinors for different metrics and to derive the variation formula for the Dir...
متن کاملGeneralized pseudo-Riemannian geometry
Generalized tensor analysis in the sense of Colombeau’s construction is employed to introduce a nonlinear distributional pseudo-Riemannian geometry. In particular, after deriving several characterizations of invertibility in the algebra of generalized functions we define the notions of generalized pseudo-Riemannian metric, generalized connection and generalized curvature tensor. We prove a “Fun...
متن کاملThe Einstein Generalized Riemannian Geometry.
s, p. 85. 2 Eggers, H. J., Cold Spring Harbor Symposia on Quantitative Biology, vol. 27 (1962) 309. 3Loddo, B., W. Ferrari, A. Spanedda, and G. Brotzu, Experientia, 18, 518 (1962). 4Ledinko, N., Cold Spring Harbor Symposia on Quantitative Biology, vol. 27 (1962) 309. 5 Eggers, H. J., and I. Tamm, J. Exptl. Med., 113, 657 (1961). 6 Eggers, H. J., and I. Tamm, Virology, 13, 545 (1961). 7Rightsel,...
متن کاملOn Noncommutative and semi-Riemannian Geometry
We introduce the notion of a semi-Riemannian spectral triple which generalizes the notion of spectral triple and allows for a treatment of semiRiemannian manifolds within a noncommutative setting. It turns out that the relevant spaces in noncommutative semi-Riemannian geometry are not Hilbert spaces any more but Krein spaces, and Dirac operators are Kreinselfadjoint. We show that the noncommuta...
متن کاملA Note on Distributional Semi-riemannian Geometry
We discuss some basic concepts of semi-Riemannian geometry in low-regularity situations. In particular, we compare the settings of (linear) distributional geometry in the sense of L. Schwartz and nonlinear distributional geometry in the sense of J.F. Colombeau. AMS Mathematics Subject Classification (2000): Primary: 83C75; secondary: 46T30, 53B30, 46F10, 46F30.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2005
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-004-0718-0